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tions. We calculated the Casimir energy and entropy and checked the agreements between
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boundaries in string theory.
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1. Introduction

The understandings of closed string tachyon condensation have been far from complete in

spite of many efforts e.g. the pioneering work by Adams, Polchinski and Silverstein [1] (a

list of references can be found in reviews [2, 3]). One of the most important problems is to

examine the time-dependent dynamical process of tachyon condensation.

Recently, a remarkable progress has been made by Horowitz and Silverstein [4, 5]

employing the AdS/CFT correspondence [6]. They considered an unstable configuration of

the near horizon geometry of D3-branes by putting the anti-periodic boundary condition

for fermions. There appears a closed string tachyon which is localized in a finite region
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of the spacetime [7, 4, 8, 5]. The endpoint of the tachyon condensation is conjectured

to be the static AdS bubble solution (or AdS soliton) [4, 5]. This process of tachyon

condensation has an equivalent description in the dual Yang-Mills theory. The dynamics

of tachyon condensation is mapped to the more traditional problem of time-dependent

process in strongly coupled gauge theories.

In this paper, we would like to explore this scenario further. First we show that the

degree of freedom decreases under this tachyon condensation process by computing the

entanglement entropy [9 – 11] of the dual Yang-Mills theory.1 In general, the degree of

freedom is expected to decrease under the closed string tachyon condensation since the

radiations produced by the process will carry away a part of it. We will also present the

dual holographic computation2 [11] in supergravity. This analysis of the entanglement

entropy offers a new evidence for the conjectured scenario of the closed string tachyon

condensation, in addition to the known decreasing of energy density [13, 5].

Next we consider a near horizon geometry of D3-branes with a twisted boundary condi-

tion. The dual geometry is described by the AdS geometry with the twisted identification.

It is equivalent to a twisted circle or Melvin background (refer to e.g. the papers [14 – 23, 3]

) fibred over the radial direction of the AdS. Its radius of the circle shrinks toward the IR

region. Then the closed string theory in this background has a tachyon field localized both

in the IR region and in a certain S3 inside the S5. We will claim that the end point of the

tachyon condensation is given by the bubble solution obtained from the double Wick rota-

tion of the rotating D3-brane solution. We will check this claim by computing the energy

density (Casimir energy) and entanglement entropy in both the free Yang-Mills and gravity

theory. We find qualitative agreements between them in general. Remarkably, the entropy

in the near extremal region precisely agrees with each other including the numerical factor.

We may also think this as a further evidence for AdS/CFT correspondence in a slightly

non-BPS background. We also observe the qualitative agreement between the ADM energy

of the twisted AdS bubble and the Casimir energy of the dual free Yang-Mills.

Another way to study the dynamical process of tachyon condensation is to directly

construct the corresponding time-dependent backgrounds of string theory. Recently, its

possible relevance to a resolution of cosmological singularities has been discussed in [24].

In general, it is very difficult to find a well-controllable time-dependent model with closed

string tachyon condensation.

A simple example of the bulk tachyon condensation in bosonic string (or type 0 string)

has been proposed to be described by the time-like Liouville theory [25, 26] (see e.g. [27 –

32, 24, 5] for a partial list of further progresses). However, this theory has not been

completely understood, especially because the continuation from the Euclidean theory is

not straightforward; there is a potential ambiguity with respect to the choice of vacua in a

time-dependent background. In the last part of the present paper, we give a simpler solvable

1Notice that the thermodynamical entropy is zero for this solution since we are considering zero tem-

perature.
2Quite recently, a slightly analogous holographic relation about the entanglement entropy in 3D topo-

logical QFTs has been pointed out in [12]. There, the boundary entropy (or g−function) is dual to the bulk

topological entanglement entropy.
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model which describes bulk closed string tachyon condensation. This is obtained by the

infinite boost of the null linear dilaton background with a Liouville potential. Equivalently

we can regard the background as a flat spacetime with a null boundary. Since there has

been no general answer to what kinds of boundaries are allowed in a spacetime of string

theory, this offers an useful basic example.

After we completed computations in this paper, we noticed an interesting paper [33]

which discusses the analogous scenario of the closed string tachyon condensation via the

AdS/CFT correspondence in a different model [34] (see also [35]).

The organization of this paper is as follows. In section 2, we first review the conjectured

connection between AdS bubbles and closed string tachyon condensation. Then we provide

a further evidence for this conjecture by computing the entanglement entropy. In section 3,

we consider the twisted AdS bubble solution and claim that it is the endpoint of the closed

string tachyon condensation on D3-branes wrapped on the twisted circle by computing the

energy and entropy. In section 4, we present a simple construction of a spacetime with

a null boundary via bulk closed string tachyon condensation. In section 5 we summarize

conclusions.

2. AdS bubbles and closed string tachyons

2.1 Static AdS bubble solution

Consider N D3-branes in type IIB string. The world volume coordinates are denoted by

(t, χ, x1, x2). We compactify χ with period L and put the anti-periodic boundary condition

for all fermions. Its near horizon geometry is represented by the AdS5

ds2 = R2 dr2

r2
+

r2

R2
(−dt2 + dχ2 + dx2

1 + dx2
2). (2.1)

The important point is that the radius of the thermal circle χ gets smaller as we goes into

the IR region r → 0. Thus we expect that when its radius rL
R is of order ls (i.e. string

scale), a closed string tachyon appears. This tachyon is clearly localized in the IR region.

To make this more precise, we can start with a shell of D3-branes which is described by

the ten dimensional metric of type IIB supergravity.

ds2 = h−1(r)[−dt2 + dχ2 + dx2
1 + dx2

2] + h(r)(dr2 + r2dΩ2
5), (2.2)

where h(r) is the function defined by

h(r) =
R2

r2
(r > r0), h(r) =

R2

r2
0

(r ≤ r0). (2.3)

Then the inside of the shell (r < r0) the metric is flat and thus we can employ the familiar

perturbative world-sheet analysis on the existence of closed string tachyons.

The remarkable claim made by Horowitz and Silverstein [5] is that this unstable back-

ground decays into the static bubble [36]

ds2 = R2 dr2

r2f(r)
+

r2

R2
(−dt2 + f(r)dχ2 + dx2

1 + dx2
2), (2.4)
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where f(r) = 1− (r0/r)
4. This can be obtained from the double wick rotation of the AdS-

Schwartzschild solution and is called the (static) AdS bubble3 or AdS soliton [13]. Near the

point r = r0 the metric is approximated by ds2 ' dy2+
4r2

0
R4 y2dχ2, where y2 ≡ R2(r−r0)/r0.

Thus to make the metric regular at this point the periodicity L of χ should be

L =
πR2

r0
. (2.5)

In the dual Yang-Mills theory, this closed string tachyon condensation is interpreted

as follows [5]. The near horizon limit of the D3-brane shell (2.2) corresponds to the super-

symmetric vacuum of N = 4 super Yang-Mills theory with non-zero expectation values of

transverse scalar fields. Now we compactify one of the three space coordinates and put the

anti-periodic boundary condition for all fermions. Then the supersymmetry is completely

broken and the scalar fields acquire non-zero masses from radiative corrections. Thus the

Coulomb branch is lifted and the theory becomes almost the same as the pure Yang-Mills,

which shows the confinement behavior [36]. The cut off of the IR region r > r0 in the

bubble solution (2.4) corresponds to the mass gap due to this confinement.

2.2 Casimir energy

An important evidence for this conjecture is that the AdS soliton has the lowest energy4 [13,

5] given by
E

V2
= − π3R3

16G
(5)
N L3

= −π2

8
· N2

L3
, (2.6)

where5 G
(5)
N is the 5D Newton constant, and V2 is the infinite volume of (x1, x2). Here we

have used the definition of the energy in an asymptotically AdS space [40, 41]

E = − 1

8πG
(5)
N

∫

S
N(K − K0), (2.7)

where the integral is over a surface near infinity S. N is defined such that the norm of the

time-like Killing field is −N2. K is the trace of the extrinsic curvature of this surface. K0

is the trace of the extrinsic curvature of a surface with the same intrinsic geometry in the

background spacetime. The energy in an asymptotically AdS space is defined such that

the AdS space itself has the vanishing energy E = 0 [40, 13].

It is useful to compare the above energy with the Casimir energy computed in the free

Yang-Mills theory [13, 42]. Consider a massless real scalar field6 φ(t, χ, x1, x2)(= φ(x)).

We compactify the χ direction such that χ ∼ χ + L. Then the two point function can be

found to be

〈φ(x)φ(x′)〉 =
1

4π2

∑

n∈Z

1

(x1 − x′
1)

2 + (x2 − x′
2)

2 + (χ − χ′ − nL)2 − (t − t′)2
. (2.8)

3Refer to e.g. [37, 38] for a time-dependent bubble solution obtained by another double Wick rotation

of the AdS black hole.
4Refer to [39] for the proof that the energy is decreasing under the closed string tachyon condensation

in asymptotically flat spaces.
5Also we have employed the standard relation G(5) = πR3

2N2 = G(10)

π3R5 in the type IIB string on AdS5 × S5.
6We normalized the field such that the Lagrangian is given by L = 1

2
(∂µφ)2.
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The energy density T00 = 1
2

[

(∂0φ)2 +
∑

i(∂iφ)2
]

can be obtained by the point splitting

regularization (refer to [43, 42] for details)

lim
x→x′

1

2

[

∂0φ(x)∂′
0φ(x′) + ∂iφ(x)∂

′

iφ(x′)
]

. (2.9)

This leads to

T00 =
1

4π2

∑

n 6=0

(

− 2

(Ln)4

)

= − π2

90L4
, (2.10)

where we regularize the summation by excluding the divergent term n = 0. We can perform

the similar analysis for a free Majorana fermion ψ with the anti-periodic boundary condition

ψ(z + L) = −ψ(z) and obtain the energy density for each component

T00 =
1

4π2

∑

n 6=0

(

2(−1)n

(nL)4

)

= − 7π2

720L4
. (2.11)

In the free N=4 super Yang-Mills, there are 8N2 bosons and 8N2 fermions and thus we

finally obtain7

E

V2L
= T00 = 8N2 ·

(

− π2

90L4

)

+ 8N2 ·
(

− 7π2

720L4

)

= −π2N2

6L4
. (2.12)

This agrees with (2.6) up to the factor 4/3 [13]. Since the gravity description corresponds

to the strongly coupled limit of the Yang-Mills theory, we can say that this agreement is

rather excellent.

2.3 Entanglement entropy: gravity side

Now we wish to turn to another quantity called the entanglement entropy [9 – 11] as another

evidence for the closed string tachyon condensation. Divide the space manifold (in our case

it is R2 × S1) into two parts A and B, and trace out the Hilbert space for the subsystem

B. This procedure defines the reduced density matrix ρA for the subsystem A. Then the

entanglement entropy SA is defined by the von-Neumann entropy SA = −trρA log ρA with

respect to the reduced density matrix ρA. This leads to a non-vanishing entropy even if we

start with a pure state on the total space A ∪ B. The choice of A is arbitrary and we can

define infinitely many entropies SA accordingly.

In general, the entanglement entropy measures the degree of freedom and thus we would

like to claim that the entanglement entropy in the dual Yang-Mills theory should decrease

under the closed string tachyon condensation. Indeed, in two dimension the entropy is

essentially known to be proportional to the central charge c [44, 45]. However, we should

keep in mind that the UV behavior of SA will not change under the localized closed string

tachyon condensation. Thus the divergent piece of the entropy, which is proportional to

the area of the boundary ∂A of the subsystem A (known as the area law [9, 10]), will not

change because this part is only sensitive to UV quantities. We expect that only a finite

7Here we are implicitly using the fact that the contribution of the gauge fields is the same as that of two

real scalar fields.
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part of the entropy will change. Thus we will consider the difference between the entropy

before and after the tachyon condensation.

In our setup of asymptotically AdS spaces we can apply the holographic computation

of entanglement entropy [11]. The entropy is given by the formula [11]

SA =
Area(γA)

4G
(5)
N

, (2.13)

where Area(γA) is the area of the minimal surface γA whose boundary coincides with ∂A.

Refer to [46] for its proof from the basic principle of the AdS/CFT correspondence. Its

interpretation from the viewpoint of the entropy bound (Bousso bound) is given in [47].

First we assume the subsystem A is defined by x1 > 0 and extends in the x2 and χ

direction. Then the entropy can be found from (2.13) (we put the UV cutoff8 r < r∞)

SA =
V1L

4G
(5)
N

∫ r∞

r0

dr
r

R
=

πRV1r
2
∞

8G
(5)
N r0

− πRV1r0

8G
(5)
N

. (2.14)

The first term is divergent and represents the area law [9, 10]. It is the same as the one in

the original AdS5 background. The second term in (2.14)

∆SA = −πRV1r0

8G
(5)
N

= −πN2V1

4L
, (2.15)

does not depend on the cut off and thus is physically important. This is equal to the

difference between the entropy in the AdS bubble and the one in the pure AdS. Since it is

negative, we find that the entropy of the AdS bubble is decreased compared with the AdS5

solution as we expected. Furthermore, we would like to conjecture that the AdS bubble has

the lowest value among other asymptotically AdS solution with the same symmetry. This is

because from the energy analysis it is considered to be the lowest energy configuration [13]

and thus is the most stable solution.

For example, we can consider the time-dependent bubble solution9 found in [5] , which

has a larger energy. The metric of the constant time slice of this solution at t = 0 is given

by

ds2
t=0 =

(

r2

R2
− r4

0

R2r2

)

dχ2 +
dr2

(

r2

R2 − r4
0

R2r2

)(

1 + b
3r4−r4

0

) +
r2

R2
(dx2

1 + dx2
2). (2.16)

The specific point b = 0 is the same as the AdS bubble with the lowest energy. We have

numerically checked that the entropy SA at t = 0 computed in the same way as in (2.14)

for b > 0 always takes a larger value than that of the AdS bubble b = 0.

It is also useful to examine the entropy in the shell configuration (2.2) since to make

sure the existence of tachyon it is better to start with the shell background of D3-branes. In

8Relation to the lattice spacing introduced in [11] is given by r∞ = R2/a.
9We are very grateful to Gary Horowitz for pointing out an important error in this paragraph of the

first version of our paper.
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this case the entropy can be found from the integration over the codimension three surface

γA, which is similar to the previous one, times S5 as follows [11]

SA =
1

4G
(10)
N

∫

γA×S5

dx8√g

=
V1L

4G
(10)
N

∫ r∞

0
drr5h(r)2

=
V1L

4G
(5)
N R

[

r2
∞

2
− r2

0

3

]

, (2.17)

where G
(10)
N is the 10D Newton constant. This is clearly larger than the entropy in the

AdS bubble (2.14) and thus the difference of the entropies again becomes negative

∆SA(shell) = −πRV1r0

24G
(5)
N

= −πN2V1

12L
< 0. (2.18)

This supports the conjecture that the AdS shell decays into the AdS bubble.

Now it is also possible to compute SA when the subsystem A is a straight belt with

a finite width l. Suppose A is defined by −l/2 ≤ x1 ≤ l/2, 0 ≤ x2 ≤ V1(→ ∞) and

0 ≤ χ ≤ L. In the dual AdS gravity, we need to consider a minimal surface γA whose

boundary ( i.e. r → ∞) coincides with the boundary ∂A of A.

The area can be written as

Area = LV1

∫ l/2

−l/2
dx1

r

R

√

(

dr

dx1

)2

+
r4f(r)

R4
. (2.19)

The energy conservation leads to

dr

dx1
=

r2

R2

√

f(r)

(

r6f(r)

r6
∗f(r∗)

− 1

)

, (2.20)

where r∗ is the minimal value of r. The relation between r∗ and l is fixed by

l

2
=

∫ ∞

r∗

dr
R2

r2

√

f(r)
(

r6f(r)
r6
∗f(r∗) − 1

)

. (2.21)

Finally the entropy can be found as

SA =
LV1

2RG
(5)
N

∫ ∞

r∗

r4
√

f(r)
√

r6f(r) − r6
∗f(r∗)

. (2.22)

An important point is that when we change the values of r∗ arbitrary, only the following

specific values of l is allowed by the relation (2.21)

l ≤ l0 ' 0.69 · R2

r0
' 0.22 · L. (2.23)

– 7 –
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Thus when l is large enough, there is no minimal surface that connects the two boundaries

of ∂A. Under this situation l > l0, the minimal surface is given by the disconnected sum

of the ones considered in (2.14).

The explicit form of the entropy as a function of l is presented in figure 1. We subtracted

the entropy Strivial
A for the trivial disconnected solution (=twice of (2.14)). The lower

solution in figure 1 is physical compared with the upper one because it has the lower

entropy and gives a dominant contribution to the path-integral in the gravity. When

SA − Strivial
A becomes positive (l̃1 ∼ 0.31), the physical solution is replaced by the trivial

disconnected one. Thus there is a phase transition10 at a specific value l1(< l0). This is

not surprising since there will be no correlation between a distance larger than ∼ L due to

the mass gap ∼ 1/L.

We would also like to notice that

0.05

0.15
0

0.1

-0.1

-0.15

0.350.30.250.2

-0.05

Figure 1: The entanglement entropy as a function

of the width l of the subsystem A. We subtracted

the entropy Strivial
A

for the trivial disconnected solution

(=twice of (2.14)). We plotted the function s = s(l̃)

defined by SA − Strivial
A

=
LV1r

2
0

2RG
(5)
N

s(l) and l̃ = π

2L
l. The

lower solution is physical compared with the upper one

because it has the lower entropy.

the physical solution in figure 1 (i.e.

lower one) is concave as a function of

l or equally d2SA

dl2
≤ 0. This follows

from the general property of the von-

Neumann entropy, which is known as

the strong subadditivity [47].

In general 4D conformal field

theories, the entanglement entropy

defined in the same way takes the fol-

lowing form [48, 11]

SA = γ · LV1

a2
− C · LV1

2l2
, (2.24)

where γ and C are numerical

constants which are proportional to

the number of fields. The first term

in (2.24) represents the area law di-

vergent term [9 – 11]. The second fi-

nite term is more interesting because

it does not depend on the UV cutoff

a → 0. Motivated by this, we would

like to call the following quantity an

entropic c-function

C(l) =
l3

LV1
· dSA(l)

dl
. (2.25)

This is a natural generalization of the entropic c-function defined in two dimension [49,

48]. Its explicit form is plotted in figure 2. Since l corresponds to the length scale which we

are looking at, C(l) measures the degree of freedom at the energy scale ∼ l−1 in the given

field theory. The figure 2 shows that its value monotonically decreases as we decrease the

energy scale from the UV region. It jumps to zero in the middle point and it continues to be

10A quite similar discontinuity has been found in the holographic computation of entanglement entropy

defined by the annular boundary in N = 4 super Yang-Mills [47].
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vanishing in the IR region. These are consistent with the expected property of c-function

that it decreases11 under the RG-flow. The sharp dump of C(l) is because the IR region

r < r0 is completely cutoff in the AdS bubble solution and represents the clear mass gap

in the dual CFT.

2.4 Entanglement entropy: free Yang-Mills analysis

Next we would like to compare the above results from the gravity side with the direct

Yang-Mills free field computations.

Consider a free massless scalar

0.150.10.05

0.06

0.04

0.02

0.350.30.250.2

0.08

0

Figure 2: The form of the entropic c-function. We

plotted l̃3 ds(l̃)

dl̃
as a function of l̃. It jumps to zero at

l̃ = l̃1 ∼ 0.31 and for larger values of l̃ it is given by

zero.

field in R1,d−1 ×S1. The radius of the

circle S1 is L. We divide the space

manifold Rd−1 × S1 (the coordinates

are denoted by (x1, x2, · · ·, xd−1;xd))

into the submanifolds A and B such

that the boundary ∂A = ∂B is given

by Rd−2 × S1 defined by x1 = 0.

The entanglement entropy can be

evaluated as follows (see e.g. [50, 51,

45, 11, 46]). First we compute the par-

tition function Zn = e−βF on the Eu-

clidean manifold Mn = Σn × Rd−2 ×
S1. The 2D manifold Σn is the n-

sheeted Riemann surface defined by

the metric ds2 = dρ2 + ρ2dθ2 in the

polar coordinate and the conical peri-

odicity 0 ≤ θ ≤ β = 2πn. Then the

entropy is obtained by

SA =

[

β
∂

∂β
− 1

]

(βF )|β=2π, (2.26)

as if β were a real temperature.

One conventional way to compute the free energy F is to employ the heat kernel

method [51]. Instead, here, we will calculate F using an orbifold theoretic analysis. In the

computation of the entropy, we can equally consider the positive deficit angle instead of

the negative one. One such example is the orbifold C/ZN . In the setup of QFT on R1,d,

the partition function of a free massive scalar on C/ZN × Rd−1 can be found as

log ZC/ZN
= Vd−1

∫ ∞

0

ds

2s
·
[

∫
(

dk⊥
2π

)d−1

e−sk2
⊥

]

· 1

N

N−1
∑

k=0

Tr
[

gk · e−m2s
]

= Vd−1

∫ ∞

0

ds

2s

1

(4πs)
d−1
2

· 1

N

N−1
∑

k=0

Tr
[

gk · e−m2s
]

. (2.27)

This formula is easily obtained by remembering the expression of the open string cylinder

amplitude (see e.g. the Polchinski’s text book [52]) in the Schwinger representation. Tr

11This is very similar to the celebrated Zamolodchikov’s c-theorem. Also notice that this is the c-theorem

for the spacetime field theories on D-branes. Do not confuse this with the c-theorem for the RG-flow of the

string world-sheet theory, which often appears when we discuss closed string tachyon condensations.
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in (2.27) denotes the trace over the zeromodes (the coordinate (z, z̄) and their momenta)

of the fields on R2(= C). k⊥ are the momenta in the transverse directions Rd−1.

The summation over k can be done exactly as follows

1

N

N−1
∑

k=0

Trgk =
1

N

N−1
∑

k=0

∫

dzdz̄ · δ(z − e2πik/Nz)δ(z̄ − e−2πik/N z̄)

=
1

N

∫

R2

dz2

∫

dk2

(2π)2
+

N−1
∑

k=1

1

4N sin2(πk/N)

= Vol(C/ZN ) ·
∫

dk2

(2π)2
+

1

12
(N − 1/N). (2.28)

Thus we can reproduce the following known expression of the entropy (notice n = 1/N)

SA = − ∂

∂(1/N)

[

log ZC/ZN
− log ZC

N

]

N=1

=
∂

∂N

[

1

12
(N − 1/N) · Vd−1

∫

ds

2s

1

(4πs)
d−1
2

e−m2s

]

N=1

=
π

3
Vd−1

∫

ds

(4πs)
d+1
2

e−m2s. (2.29)

In our setup, we would like to assume one of the transverse directions is compactified

at the radius L
2π . Then we obtain

SA =
π

3
Vd−2

∫ ∞

a2

ds

(4πs)d/2
· L

2π
·
√

π

s
·

∞
∑

q=−∞

e−
L2q2

4s , (2.30)

where we introduced the UV cutoff (or the lattice spacing) a. We divide (2.30) into the

divergent q = 0 term and the finite q 6= 0 term

SA = Sarea law
A + Sfinite

A , (2.31)

Sarea law
A =

π

3
· LVd−2 ·

∫ ∞

a2

ds

(4πs)(d+1)/2
, (2.32)

Sfinite
A =

Vd−2

3
· 2−1π

1
2
− 1

2
d · Γ

(

d

2
− 1

2

)

· ζ(d − 1) · 1

Ld−2
. (2.33)

In particular, the 4D massless scalar d = 3, we find

Sfinite
A =

πV1

36L
. (2.34)

Now we turn to free fermions. By direct computation we can show that the expression

of SA is the same form and its coefficient is proportional to the central charge c when we

reduce the system to two dimension [51]. One way to understand this is to note that the

entropy of the d + 1 dimensional free field theory is obtained from the two dimensional

entropy with the correlation length ξ = 1/m [45]

SA =
πc

3

∫ ∞

a2

ds

4πs
e−sm2

=
c

6
log(ma), (2.35)
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by summing over the KK modes as follows

SA =
πc

3
Vd−2

∫
(

dk⊥
2π

)d−1 ∫ ∞

a2

ds

4πs
e−s(m2+k2

⊥
) =

πc

3
Vd−2

∫ ∞

a2

ds

(4πs)(d+1)/2
e−sm2

. (2.36)

Thus for each real component of a Majorana fermion with the periodic boundary

condition we find

S
(P )
A =

π

6
Vd−2

∫ ∞

a2

ds

(4πs)d/2
· L

2π
·
√

π

s
·

∞
∑

q=−∞

e−
L2q2

4s . (2.37)

On the other hand, the anti-periodic fermion leads to

S
(A)
A =

π

6
Vd−2

∫ ∞

a2

ds

(4πs)d/2
· L

2π
·
√

π

s
·

∞
∑

q=−∞

(−1)q · e−
L2q2

4s . (2.38)

When d = 3, the finite part of the entropy for each of them is given by

S
finite(P )
A =

πV1

72L
, S

finite(A)
A = − πV1

144L
. (2.39)

In summary, the finite part of the entanglement entropy in N=4 SU(N) super Yang-

Mills theory can be found in both periodic and anti-periodic fermion cases as follow

S
finite(P )
A =

N2πV1

3L
, S

finite(A)
A =

N2πV1

6L
. (2.40)

Their difference

∆SA = S
(A)
A − S

(P )
A = −πN2V1

6L
, (2.41)

should be compared with the AdS result (2.15). They differs only by the factor 2
3 . Again,

we can think this a successful agreement since the gravity calculation is dual to the strongly

coupled Yang-Mills, while our gauge theoretic result is found for the free Yang-Mills. The

entanglement entropy is not protected by any supersymmetries because the conical geom-

etry appears in the definition (2.26) breaks all of supersymmetries.

Finally it may be interesting to examine the entanglement entropy in the free Yang-

Mills when the subsystem A is defined by the straight belt with a finite width as in (2.24).

This has been done in [11] for the N=4 super Yang-Mills and the entropy of the form (2.24)

was obtained. The strategy is to first regard the system to infinitely many 2D free field the-

ories and then to integrate the known numerical results of the 2D entropic c-function [48].

We can repeat the same computation in our compactified Yang-Mills theory. However, it

does not seem to be possible to reproduce the phase transition as a function l found in

the previous gravity analysis. This will be essentially because the phase transition occurs

due to the strongly coupled phenomena (i.e. confinement), while we are treating the free

Yang-Mills.
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3. Twisted AdS bubbles and closed string tahcyons

We would like to study the second example i.e. the double Wick rotation of the rotating

non-extremal D3-branes [53 – 55]. We will claim that this solution (we call it the twisted

AdS bubble12) is the end point of the decay of the D3-brane background with a twisted

boundary condition (i.e. the twisted circle or Melvin background [14, 22]). By taking

the near horizon limit, this is equivalent to the statement that the AdS with the twisted

identification (we call it the AdS twisted circle) will decay into the twisted AdS bubble via

closed string tachyon condensation.

3.1 Twisted AdS bubble solution

After the double Wick rotation t → iχ, χ → it and l → −il of the rotating black 3-brane

solution [53 – 55], the solution looks like

ds2 =
1√
f

(−dt2 + h dχ2 + dx2
1 + dx2

2) +
√

f

[

dr2

h̃
− 2lr4

0 cosh α

r4∆f
sin2 θdχdφ

+r2(∆dθ2 + ∆̃ sin2 θdφ2 + cos2 θdΩ2
3)

]

, (3.1)

where f , h, h̃, ∆ and ∆̃ are defined as follows

f = 1 +
r4
0 sinh2 α

r4∆
, ∆ = 1 − l2 cos2 θ

r2
, ∆̃ = 1 − l2

r2
− r4

0l
2 sin2 θ

r6∆f
,

h = 1 − r4
0

r4∆
, h̃ =

1 − l2

r2 − r4
0

r4

∆
. (3.2)

The parameter l before the double Wick rotation is proportional to the angular momentum

of the black brane solution.

The allowed lowest value rH of r is given by the solution to h̃(r) = 0

r2
H =

l2

2
+

√

r4
0 +

l4

4
(> l2). (3.3)

It is easy to see that f , h, h̃, ∆ and ∆̃ are all positive when r > rH . The total 3-brane

RR-charge is proportional to r4
0 cosh α sinhα(∝ N) and it is taken to be a finite constant.

If we set the angular momentum to zero l = 0, then it is reduced to the previous

example of the AdS bubble. In the near horizon limit, we can approximate it as f ' r4
0 sinh2 α

r4∆

and thus the AdS radius R is given by R2 = r2
0 sinh α. Thus we call this solution the twisted

AdS bubble.

As in the previous example we need to be careful about the regularity of the solution.

The non-trivial constraint comes from the behavior near the point θ = 0 and r = rH .

12Refer to [56] for the time-dependent bubble solution obtained by another double Wick rotation of

R-charged solutions in 5D gauged supergravity.

– 12 –



J
H
E
P
0
1
(
2
0
0
7
)
0
9
0

Around that point, the relevant part of the metric looks13

ds2 ' βr4
H

r4
0 cosh α

(r − rH)dχ2 +
r4
0 cosh α

βr4
H

dr2

r − rH

+
r4
0 cosh α

r2
H

[

dθ2 + θ2(dφ − lr2
H

r4
0 cosh α

dχ)2
]

, (3.4)

where β = 4
rH

− 2l2

r3
H

.

The regularity requires the following two identifications

(χ, φ) ∼ (χ, φ + 2π), (χ, φ) ∼ (χ + L, φ + 2πζ), (3.5)

where

L =
2πr4

0 cosh α

2r3
H − l2rH

, ζ =
lr2

H

2r3
H − l2rH

. (3.6)

3.2 Twisted circle background

The second condition in (3.5) looks non-trivial. Though in the asymptotic region r → ∞,

the form of the metric approaches the flat metric

ds2 = −dt2 + dχ2 + dx2
1 + dx2

2 + dr2 + r2(dθ2 + sin2 θdφ2 + cos2 θdΩ2
3), (3.7)

the second periodicity requires that (χ, φ) is identified (χ, φ) ∼ (χ + L, φ + 2πζ). This

means that the asymptotic geometry is the twisted circle (or Melvin background). The

string theory on such a background was first studied in [14].

The parameter ζ which measures the strength of the twist takes the values within

0 ≤ ζ < 1. This is clear if we rewrite it as follows

ζ =

√

x4 + x2
√

4 + x4

2(x4 + 4)
,

(

x ≡ l

r0

)

. (3.8)

The upper bound ζ < 1 is very natural since the point ζ = 1 corresponds to the super-

symmetric compactification in the asymptotic region and thus there should be no bubble

solution. Indeed we can see that the limit ζ → 1 is equivalent to the extremal D3-branes

l, r0 → 0, keeping L and N finite.

Sometimes it is useful to define the new angular coordinate φ̃ = φ−qχ, where qL = 2πζ,

and rewrite the metric (3.7) as follows

ds2 = −dt2 + dχ2 + dx2
1 + dx2

2 + dy2 + y2(dφ̃ + qdχ)2 +

4
∑

i=1

dz2
i , (3.9)

where we used the transverse coordinates defined by y ≡ r sin θ and zi ≡ r cos θ(Ω3)i.

Notice that in this new coordinate system, the periodicity of φ̃ and χ are are given by the

ordinary (untwisted) ones φ̃ ∼ φ̃ + 2π and χ ∼ χ + L.

13Notice ∆ = ∆̃ =
r4
0

r4
H

and f = cosh2 α.
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The string theory on the twisted circle does not change continuously with respect to

the parameter ζ. Especially, when ζ is irrational, it is known that the string theory behaves

rather unusually [17, 57]. Thus below we will mainly assume that ζ takes rational values

ζ =
k

M
, (3.10)

where k and M are coprime positive integers. In this case the string theory on (3.9) is

equivalent to the one on the ZM orbifold (R2 × S1)/ZM × R1,6. To be more precise, the

background before the ZM projection is considered to be the ordinary supersymmetric type

II string when k + M is even. On the other hand, when k + M is odd, it is the type II

string with an antiperiodic boundary condition for fermions in the circle direction.14 If we

take the small radius limit L → 0, the background becomes equivalent to the type II string

(or type 0 string) on R × (C/ZM ) when k + M is even (or is odd) [17].

3.3 Closed string tachyon condensation

It is known that in the twisted circle background (or Melvin background) of type II string,

a closed string tachyon appears when the radius of circle is enough small [14] ( string

scale). This tachyon is localized near the origin of R2 [14 – 18, 22]. Suppose N D3-branes

are located at r = 0 of the twisted circle (3.7). Then its near horizon metric is given by

ds2 = R2 dr2

r2
+

r2

R2
(−dt2 + dχ2 + dx2

1 + dx2
2) + R2(dθ2 + sin2 θdφ2 + cos2 θdΩ2

3). (3.11)

with the identification (χ, φ) ∼ (χ + L, φ + 2πζ). Then we find that the radius of the

twisted circle χ becomes small in the IR region r ¿ 1. Thus we expect the closed string

tachyon condensation in that region. We would like to argue that the end point is given by

the twisted bubble (3.1) in the similar sense of the previous example of the AdS bubble.

To make this argument clearer, we can assume the shell distribution of the D3-branes so

that the flat spacetime is realized inside the shell as before. We will presents non-trivial

evidences by comparing the energy density and the entanglement entropy between the

gauge and gravity side in the following subsections.

To see if this speculation makes sense, it is useful to see how the twisted boundary

condition (3.5) at the UV boundary r = ∞ evolves toward the IR region r → r0. If we

rewrite the metric (3.1) near θ = 0 in the form A(dχ)2 +Bθ2(dφ− q(r)dχ)2 + · · ·, the twist

parameter q(r) is given by

q(r) =
lr4

0 cosh α

∆2fr6
. (3.12)

This becomes monotonically large toward the IR region and it becomes zero in the UV

limit r = ∞. Since we put the twisted boundary condition at r = ∞ and the non-zero

value of q(r) cancels the effect of the twist, the strength of the twist becomes weaker as we

go into the IR region and it vanishes at r = rH smoothly. This is qualitatively consistent

14In other words, it is the Z2 orbifold of type II string by the action σ1/2 · (−1)FS , where σ1/2 is the half

shift along the circle and FS is the spacetime fermion number.
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with the fact that the closed string tachyon condenses only in the IR region, where the

radius of the circle becomes stringy size and that the UV geometry should not change.

At the same time, another important property of the closed string tachyon in the AdS

twisted circle is that it is localized near the S3 (‘north pole’) defined by θ = 0 within the

whole S5. This is the crucial difference between this example and the previous one in section

2. Indeed, the geometry depends on the position of S5 as is clear from the metric (3.1).

We can find that the radius of the twisted circle (defined by the shift ∆χ = L, ∆φ = 2πζ)

depends on θ and it is non-zero except the north pole S3. Thus the twisted circle shrinks

to zero size in the north pole. This is consistent with the fact that the tachyon is localized

at the north pole and the observation in [7] that the winding tachyon will pinch off the

wound circle.

3.4 Asymptotically flat solution with a conical singularity

In the previous subsection the background asymptotically approaches the twisted circle

and thus is not asymptotically flat. Instead, we can consider the same solution (3.1) with

requiring the asymptotic flatness. Inevitably, we will encounter conical singularities in the

IR region at θ = 0, r = rH . Notice that we consider this asymptotically flat solution only

in this subsection among all parts of the present paper.

Let us first examine what types of the singularities appear in the IR region. The

asymptotic flatness requires the coordinates φ and χ are compactified in a usual way i.e.

(χ, φ) ∼ (χ + L′, φ), (χ, φ) ∼ (χ, φ + 2π), (3.13)

where the periodicity L′ is not necessarily equal to L in (3.6). Now we assume the combi-

nation ζL′

L is a rational number and we express it as ζL′

L = k
M , where M and k are coprime

integers. Define the following two angles

χ̃ ≡ 2πζ

kL
χ, φ̃ = φ − 2πζ

L
χ. (3.14)

They satisfy the following periodicity

(χ̃, φ̃) ∼ (χ̃ +
2π

M
, φ̃ − 2πk

M
), (χ̃, φ̃) ∼ (χ̃, φ̃ + 2π). (3.15)

Thus if we define the following coordinate of R4 = C2 in the neighborhood of θ = 0, r = r∗
(irrelevant constant factors are denoted by a and b)

Z1 = a
√

r − r∗e
iχ̃, Z2 = bθeiφ̃, (3.16)

the singular geometry is described by the orbifold C2/ZM described by the ZM action

(Z1, Z2) ∼ (Z1e
2πi
M , Z2e

− 2πik
M ). (3.17)

Next we would like to estimate the energy of these configurations. It is known that the

ADM energy of the rotating black hole is given by the same formula as the non-rotating

one i.e. l = 0 [54, 53]. This is because its asymptotic geometry r → ∞, where we read off
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the ADM mass, does not depend on the parameter l [58, 41]. The same is true for our case

since the double Wick rotation does not essentially touch15 the terms which depend on l.

Thus we obtain the energy density of the twisted bubble

T00 =
π2r4

0

16G
(10)
N

(1 + 4 sinh2 α). (3.18)

We would like to subtract the energy stress tensor of extremal D3-branes from (3.18). The

extremal limit is given by r0 → 0 (or α → ∞). To do this subtraction we should keep the

total RR-flux same in both sides. The RR-flux is proportional to r4
0 sinhα cosh α as we

mentioned. The energy density of extremal D3-branes with the same amount of RR-flux is

T
(0)
00 =

π2r4
0

4G
(10)
N

sinhα cosh α. (3.19)

After the subtraction the energy density becomes

T00 − T
(0)
00 = − π2r4

0

16G
(10)
N

. (3.20)

Even though this expression looks equivalent to the AdS bubble (l = 0), its physical

value depends on l non-trivially via the relation (3.6) (we always fix the value of L).

3.5 Casimir energy

Now we come back to the geometry (3.1) with the twisted identification (3.5). It is dual to

the SU(N) Yang-Mills theory with the twisted boundary condition. This originates from

the D3-branes wrapped on the circle S1 in the orbifold (R2×S1)/ZM [20, 3] (see also [21]).

Let us compute the Casimir energy in this gauge theory.

The transverse (complex) scalar in the R2 direction is denoted by Φ, and the other

scalars are denoted by φ. Their twisted boundary conditions are written as

Φab(z + L) = e
2πi
M

(a−b+k)Φab(z), φab(z + L) = e
2πi
M

(a−b)φab(z), (3.21)

where a and b represents the Wilson line in the circle direction and take values16 0 ≤ a, b <

M . For the fermions we similarly find

ψab(z + L) = e
πi(k+M)

M e
2πi(a−b)

M ψab(z). (3.22)

The two point functions for these fields can be found easily. For example, the one for

the field φ becomes

〈φ(x)abφ(x′)ba〉 =
1

4π2

∑

n∈Z

e
2πi
M

(a−b)n

(x − x′)2 + (y − y′)2 + (z − z′ − nL)2 − (t − t′)2
. (3.23)

15Even though the off diagonal term ∝ dtdφ depends on l, its coefficient becomes too small to contribute

to the ADM mass when r is large.
16As shown in [20], the values i ≤ a, b < i + 1 corresponds to the i-th fractional branes in the orbifold

limit L → 0.
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As in section 2.2, it is straightforward to compute the Casimir energy from (3.23). When

we consider N D3-branes with the same value of the Wilson line, we obtain

T00 =
N2

π2L4

[

−6
∞
∑

n=1

1

n4
− 2

∞
∑

n=1

cos(2πnk
M )

n4
+ 8

∞
∑

n=1

cos(πn(k+M)
M )

n4

]

= −N2π2

L4

[

1

6
− k2

M2
+

4k3

3M3
− k4

2M4

]

=
N2π2

L4

[

1

6
− ζ2 +

4

3
ζ3 − 1

2
ζ4

]

, (3.24)

where we have employed the identity

∞
∑

n=1

cos(nx)

n4
=

1

48

[

2π2(x − π)2 − (x − π)4 − 7

15
π4

]

. (3.25)

This energy density (3.24) is a monotonically increasing function of ζ (see the lower

graph in figure 3). In particular, it takes the vanishing value T00 = 0 at the supersymmetric

point ζ = 1 and the previous value (2.12) at ζ = 0. Notice also that T00 is negative except

the supersymmetric point, which is consistent with our claim that the closed string tachyon

condensation leads to the twisted AdS bubble.

In the above we assumed that D3-branes at the twisted circle (R2 × S1)/ZM have the

same value of the Wilson line a. In the orbifold theoretic language, such branes are called

fractional D3-branes of the same type. We cannot move them away from the origin of R2

without exciting the system [20, 19].

It is also intriguing to consider a bulk D3-brane, which is equivalent to a linear com-

bination of M fractional D3-branes of different types. A bulk D3-brane has a moduli

which shifts its position away from the origin. To compute the Casimir energy of N bulk

D3-branes we need to sum over a and b such that a, b = 0, 1, 2, · · ·,M − 1. This can be

easily done because
∑

a,b e
2πi
M

(a−b)n = M2 ·δn,MZ. Thus the total Casimir energy is given by

replacing L with ML and multiplying M2. Also we have to be careful about the boundary

condition for fermions. In the end we find the following result: when k + M is even, the

energy is vanishing, while k + M is odd, it is given by

T00 = − π2N2

6M2L4
. (3.26)

It is now clear that the system of bulk D3-branes has a larger energy compared with

that of the fractional D3-branes and thus it is unstable. These results for the bulk D3-

branes also tell us that the dual background is given by the ZM orbifold of the pure AdS

or of the (untwisted) AdS bubble with the periodicity χ ∼ χ + ML when k + M is even or

odd, respectively. Thus when the k + M is odd, the bulk tachyon is condensed in the IR

region, while k + M is even, closed string tachyons is not condensed.
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In other words, the tachyon condensation process from the AdS twisted circle to the

AdS twisted bubble is dual to the shift of the Wilson line expectation values17 from those

for the bulk D3-branes to those for the fractional D3-branes if k + M is even.

To make the above point clearer, let us compare the energy computed in the free Yang-

Mills with the one (3.20) found in the gravity side. Here we have to be careful since we are

treating the energy in a background which is not asymptotically flat or AdS. Nevertheless,

we assume the result (3.20), which was obtained by requiring the asymptotic flatness, is

also true for our case with the twisted boundary condition. This is reasonable because the

twisted circle is a freely acting orbifold and will not produce any extra energy as opposed

to the conical orbifold C/Zn [40, 39].

The energy density in the gravity side reads in terms of the gauge theoretic variables

T00 = −π2N2

8L4
· 1

(x2/2 +
√

1 + x4/4)2(1 + x4/4)2
' −π2N2

L4

(

1

8
− 1

2
ζ2 + · · ·

)

, (3.27)

where in the final expression we wrote down the power expansion with respect to ζ. This

result is plotted as a upper graph in figure 3. It takes the values T00 → −π2N2

8L4 (ζ → 0)

and T00 → 0 (ζ → 1). The qualitative behavior of the gravitational energy agrees with the

Casimir energy in free Yang-Mills (3.24) rather successfully as is clear from figure 3. The

ratio of the energy density in both sides is given by
T freeYM
00

T gravity
00

= 4
3 for the AdS bubble ζ = 0

as we have already reviewed in section 2.2. A new result here is that in the extremal limit

ζ → 1 it approaches
T freeYM

00

T gravity
00

=
9

8
. (3.28)

This value is closer to 1 than the result at ζ = 0, which is very natural because the free

Yang-Mills can be a better approximation to the strongly coupled Yang-Mills in the almost

BPS case than in the deeply non-BPS case.

3.6 Entanglement entropy

The entanglement entropy in the free U(N) N=4 Yang-Mills theory can be obtained as in

section 2.4. The result for the field with the twisted boundary condition φ(z + 2πR) =

e
2πi
M

aφ(z) is obtained from the untwisted one by replacing the sum
∑

q∈Z e−
π2R2q2

s with
∑

q∈Z e
2πi
M

aq · e−π2R2q2

s in (2.30). We can perform the summation by using the formula

∞
∑

n=1

cos(nx)

n2
=

1

4
(x − π)2 − π2

12
. (3.29)

Suppose N fractional D3-branes on the twisted circle. The entropy can be found as

SA = 12N2 · Sarea law
A +

N2πV1

6L

(

1 +
3k2

M2
− 2k

M

)

, (3.30)

where Sarea law
A is defined by (2.32). Thus we obtain

∆SfreeYM
A = −N2πV1

6L

(

1 + 2ζ − 3ζ2
)

. (3.31)

17This means that the tachyon condensation corresponds to the clumped eigenvalues of Wilson loop.

This looks analogous to the behavior of the 2D maximally supersymmetric Yang-Mills pointed out in

the paper [59], which relates the clumping phenomena to the Gregory-Laflamme black-hole/black string

transition. It is also similar to the free Yang-Mills analysis [60, 61] of the deconfinement phase transition [36].
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Since this is clearly negative ∆SA < 0 (for 0 ≤ ζ < 1), we again confirm that the entan-

glement entropy decreases under the closed string tachyon condensation.

In the case of N bulk D3-branes,

0.2 0.4 0.6 0.8 1

-0.15

-0.125

-0.1

-0.075

-0.05

-0.025

Figure 3: The Casimir energy (in the normalization

of L
4

π2N2 · T00) as a function of the twist parameter

0 ≤ ζ ≤ 1 is presented in both gravity and free Yang-

Mills side. The one starts with the value −0.125 is

the gravity result and the other is the free Yang-Mills

result.

the entropy takes the following form

(we assume k + M is odd)

SA = 12M2N2 · Sarea law
A +

N2πV1

6L
,

(3.32)

where Sarea law
A is defined by (2.32).

Thus the finite term does not depend

on M . When k + M is even, the

second finite term is given by N2πV1
3L .

Again these results are consistent with

the previous claim that the dual back-

ground of the bulk 3-branes is given by

the orbifold of the pure AdS or of the

(untwisted) AdS bubble with the peri-

odicity ML when k+M is even or odd,

respectively, by considering the entropy density ∆SA
LV1

.

Next we compare these with the gravity calculation. We would like to apply the

holographic computation of the entanglement entropy to the near horizon limit eα À 1 of

the twisted bubble (3.1). In this example, the total 10D spacetime is relevant and thus we

need to apply the holographic formula generalized into ten dimension [11]

SA =
1

4G
(10)
N

∫

γA×S5

√
g, (3.33)

which was already employed in (2.17). We only consider the simplest case where the

subsystem is defined by dividing the total space into half parts as in (2.14). After some

algebras we find that the integral in (3.33) becomes drastically simplified as

SA =
V1L

4G
(5)
N

∫ r∞

rH

dr
r

R
=

V1L

4G
(5)
N R

(

r2
∞

2
− r2

H

2

)

. (3.34)

In terms of the gauge theoretic language assuming ζ = k
M , the second finite term is

equivalently rewritten as (x = l/r0)

∆Sgravity
A = − πN2V1

(4 + x4)L
. (3.35)

Again we confirmed ∆SA < 0 and this agrees with our conjecture.

The figure 4 summarizes the results in both free Yang-Mills (upper) and gravity side

(lower). First we notice that in the near extremal region 1 − ζ ¿ 1, the entropy coincides

precisely

∆SfreeYM
A ' ∆Sgravity

A ' 2πN2V1

3L
(ζ − 1). (3.36)
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0.2 0.4 0.6 0.8 1

-0.25

-0.2

-0.15

-0.1

-0.05

Figure 4: The entanglement entropy (in the normalization of L

πN2V1
∆SA) as a function of the

twist parameter 0 ≤ ζ ≤ 1 is presented in both gravity and free Yang-Mills side. The one starts

with the value −0.25 is the gravity result and the other is the free Yang-Mills one.

On the other hand, near ζ = 0, their behaviors are slightly different. The free Yang-Mills

entropy takes a minimum value at ζ = 1
3 , while the gravity (or strongly coupled gauge

theory) entropy is a monotonically increasing function. Since the entanglement entropy is

not protected by supersymmetries, we may have to be satisfied with this result, though it

is not clear why the free Yang-Mills entropy takes the minimum value. The quantitative

agreement in the near extremal region (3.36) is remarkable from this conventional viewpoint

and may be regarded as a further evidence for AdS/CFT correspondence in slightly non-

BPS backgrounds.

3.7 More general solutions

We can construct more general twisted AdS bubble solutions by the double Wick rotation of

rotating D3-brane solutions [55] with three angular momenta (or equally three R-charges)

ds2 =
1√
f

(−dt2 + h dχ2 + dx2
1 + dx2

2) +
√

f

[

dr2

h̃
+ r2

3
∑

i=1

Hi(dµ2
i + µ2

i dφ2
i )

−2r4
0 cosh α

r4∆f
dχ

( 3
∑

i=1

liµ
2
i dφi

)

− r4
0

r4∆f

( 3
∑

i=1

liµ
2
i dφi

)2]

, (3.37)

where f , h, h̃, ∆ and Hi(i = 1, 2, 3) are defined as follows

f = 1 +
r4
0 sinh2 α

r4∆
, Hi = 1 − l2i

r2
, ∆ = H1H2H3

3
∑

i=1

µ2
i

Hi
,

h = 1 − r4
0

r4∆
, h̃ =

H1H2H3 − r4
0

r4

∆
, (3.38)

and

(µ1, µ2, µ3) = (sin θ, cos θ sin φ, cos θ cos φ). (3.39)

If we set l2 = l3 = 0, this metric is reduced to the previous example with the one angular

momentum, identifying l = l1. Here we consider the two angular momentum case setting

l3 = 0 just for simplicity.
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The lower limit rH is given r2
H =

l21+l22
2 +

√

r4
0 +

(l21−l22)2

4 , and f , h, h̃, ∆ and Hi(i =

1, 2, 3) are all positive when r > rH . Around the point θ = φ = 0 and r = rH , the metric

looks like

ds2 ' βr4
H

r4
0 cosh α

(r − rH)dχ2 +
r4
0 cosh α

βr4
H

dr2

r − rH

+(r2
H − l21) cosh α

[

dθ2 + θ2(dφ1 −
l1

(r2
H − l21) cosh α

dχ)2
]

+(r2
H − l22) cosh α

[

dφ2 + φ2(dφ2 −
l2

(r2
H − l22) cosh α

dχ)2
]

, (3.40)

where β = 4
rH

− 2(l21+l22)

r3
H

.

The regularity requires the following three identifications

(χ, φi) ∼ (χ, φi + 2π), (i = 1, 2)

(χ, φ1, φ2) ∼ (χ + L, φ1 + 2πζ1, φ2 + 2πζ2), (3.41)

where

L =
2πr4

0 cosh α

2r3
H − (l21 + l22)rH

, ζi =
lir

4
0

(2r3
H − (l21 + l22)rH)(r2

H − l2i )
. (3.42)

The parameters ζ1, ζ2 take the values within 0 ≤ ζ1, ζ2 < 1 and 0 ≤ ζ1 + ζ2 < 1.

Suppose that the twist parameters ζ1, ζ2 take rational values

ζi =
ki

M
, (i = 1, 2), (3.43)

where ki and M are coprime positive integers. Then the string theory approaches the one

defined on the (generalized) twisted circle (C2 × S1)/ZM ×R1,4 [17, 18] in the asymptotic

region r → ∞. Since the point ζ1 = ζ2 = 0 corresponds to the anti-periodic boundary con-

dition for fermions, the sixteen supersymmetries are preserved when the following condition

is satisfied [17, 18]

ζ1 + ζ2 = 1. (3.44)

In the dual gauge theory side, the Yang-Mills theory becomes N = 2 supersymmetric.

Except these supersymmetric points, the string theory on the twisted circle includes tachyon

field as before [17, 18]. We wish to claim that in the presence of D3-branes the endpoint of

the closed string tachyon condensation is given by the twisted AdS bubble solution (3.37).

Let us compute the Casimir energy. The transverse (complex) scalar in the C2 direction

is denoted by Φi (i = 1, 2), and the other scalars are denoted by φ. Their twisted boundary

conditions are written as

Φi
ab(z + L) = e

2πi
M

(a−b+ki)Φi
ab(z), φab(z + L) = e

2πi
M

(a−b)φab(z), (3.45)

where 0 ≤ a, b < M . For the fermions we similarly find

ψ±
ab(z + L) = e

πi(k1±k2+M)
M e

2πi(a−b)
M ψ±

ab(z). (3.46)
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When we consider N (fractional) D3-branes with the same value of the Wilson line,

we obtain

T freeYM
00 =

N2

π2L4

[

−4

∞
∑

n=1

1

n4
− 2

∞
∑

n=1

cos( 2πnk1
M ) + cos(2πnk2

M )

n4

+4
∞

∑

n=1

cos(πn(k1+k2+M)
M ) + cos(πn(k1−k2+M)

M )

n4

]

= −N2π2

L4

[

1

6
− (ζ2

1 + ζ2
2 ) +

4

3
(ζ3

1 + ζ3
2 ) − 1

2
(ζ2

1 − ζ2
2 )2

]

. (3.47)

On the other hand, in the gravity side, the energy density of this twisted bubble is

given

T gravity
00 = − π2r4

0

16G
(10)
N

= −π2N2

8L4
·
(

1 +
(x2 − y2)2

4

)−2

·
(

x2 + y2

2
+

√

1 +
(x2 − y2)2

4

)−2

,

(3.48)

where x = l1/r0 and y = l2/r0. We can again confirm the qualitative agreement of the

behavior of the energy density between the free Yang-Mills and gravity result. We can

check in both sides that T00 vanishes along the supersymmetric points (3.44) as expected.

We can also examine the entanglement entropy as in the previous case. The gravity

computation leads to

∆Sgravity
A = − πN2V1

(4 + (x2 − y2)2)L
. (3.49)

On the other hand, the free Yang-Mills result reads

∆SfreeYM
A = −πN2V1

6L

(

1 + 2(ζ1 + ζ2) − 3(ζ2
1 + ζ2

2 )
)

. (3.50)

We can check the qualitative agreement between them as before. The limits which

approach backgrounds with sixteen supersymmetries (i.e. ζ1 +ζ2 = 1 as in (3.44)) are given

by

x2 − y2 = α2, x → ∞, y → ∞, (3.51)

where α is a finite constant. Then the twist parameters are given by

ζ1 =

α2

2 +
√

1 + α4

4

2
√

1 + α4

4

, ζ2 =
−α2

2 +
√

1 + α4

4

2
√

1 + α4

4

. (3.52)

In this limit, the free Yang-Mills result (3.50) is simplified as follows

∆SfreeYM
A → −πN2V1

L
· 1

4 + α4
. (3.53)

This precisely agrees with the gravity result (3.49). In this comparison, the important

point is that the entropy for the N = 2 super Yang-Mills is different from that for the

N = 4 super Yang-Mills. We can also regard this successful quantitative agreement as

a further support for the assumed holographic calculation (3.33). It will be a moderate

exercise to extend the above results to the three parameter cases li 6= 0 (i = 1, 2, 3), which

include N = 1 super Yang-Mills theories.
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3.8 Comparison with known results from world-sheet RG-flow analysis

It will also be helpful to compare18 the above decay process with the results obtained from

the world-sheet RG-flow [22, 62] (for a review see [3]) using the gauged linear σ-model. In

this analysis, the decay of the twisted circle in flat space (i.e. (R2 × S1)/ZM ) is considered

and thus there are no D3-branes. The vanishing of the twisted circle S1 is also observed

in this world-sheet RG-flow analysis [62]. However, after the circle vanishes, another circle

(called the supersymmetric cycle) S̃1 appears and the endpoint becomes R2 × S̃1, where

the radius of the new circle becomes M times that of the twisted circle [22, 15]. This latter

process is not included in our AdS counter part (3.1).

Probably, this difference is due to the presence of the cosmological constant or equally

of the D3-branes. Since the conservation of the twisted sector RR-charges is violated by

the closed string tachyon condensation [62] (see also [63] for the two dimensional orbifold

C/ZN ), we expect a large back reaction in the presence of fractional D3-branes. Indeed,

as we have seen, the D-branes which constitute the AdS twisted bubble (3.1) are identified

with the fractional D3-branes of the same kind. It will be an interesting future problem to

explore this issue.

4. Null boundaries in string theory and closed string tachyons

Up to now, we have discussed static bubble solutions in string theory.19 Generally, such

a background is described by a complicated metric and RR flux and it is not easy to

solve the corresponding string theory. One way to simplify the background is to take a

particular limit without ending up with a trivial solution. Consider an infinite boost of

the asymptotically flat bubble solution (3.1). Remember that in the previous section we

claimed that this background (3.1) is an end point of the closed string tachyon condensation.

In particular, we set l = 0 in (3.1) for simplicity. This is the static bubble solution whose

near horizon limit is the AdS bubble (2.4).

After the infinite boost t±r → γ∓(t±r) and γ → ∞, we find that the metric becomes

simplified as follows

ds2 ' −dt2 + dr2 + dχ2 + dx2
1 + dx2

2 +
γ2

4
(t − r)2dΩ2

5

→ −dt2 + dr2 + dχ2 + dx2
1 + dx2

2 + (t − r)2
5

∑

i=1

dy2
i , (4.1)

where the final expression can be found by noting that the five sphere can be approximated

by yi ∈ R5 in the limit γ → ∞. Furthermore, since the original radial coordinate is

restricted to the values r ≥ r0, the allowed values of (t, r) in (4.1) become after the boost

r − t > 0. (4.2)

18We are very grateful to Takao Suyama for useful discussions about the materials in this subsection.
19Most of the contents in this section can be read without using the results in previous sections. Also the

readers can skip this section who are interested in the discussions of closed string tachyon condensations

from the viewpoint of AdS/CFT correspondence.
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Thus this spacetime has a null boundary20 (or light-like boundary) at r − t = 0.

In general, there has been no systematic understanding on what kinds of spacetime

boundaries are allowed in the string theory. Therefore, it will be helpful to examine various

string theory backgrounds with spacetime boundaries. As we will see below this subject

is closely related to the closed string tachyon condensation since the tachyon wall can be

regarded as a spacetime boundary. At the same time, a non-static boundary in spacetime

offers us a simple time-dependent background in string theory.

Below we will discuss exactly solvable examples with null boundaries in critical string

theory. They are obtained from bulk closed string tachyon condensations21 simpler than

the quasi local tachyon condensations relevant for (2.4) and (3.1). They are so simple that

their spacetimes except the null boundaries are just the ordinary 26 or 10 dimensional flat

spacetime, where the perturbative description of string theory can be done exactly.

4.1 Null boundaries in bosonic string

Consider the 26 dimensional critical bosonic string. The coordinates in the bosonic string

are denoted by xµ (µ = 0, 1, 2, · · ·, 25) and their world-sheet fields are written as Xµ. We

assume the null (or light-like) linear dilaton22 in this background23

gs = e−Q(x0+x1). (4.3)

Notice that the total central charge for the world-sheet fields X0 and X1 remains c = 2

and thus the background is still critical.

Furthermore we put the Liouville potential

SL = µ

∫

dz2e−2bX1 , (4.4)

where b > 0 is determined from the relation Q = b + 1/b. This regulates the strongly

coupled regions at large X1.

Now we perform the infinite Lorentz boost such that the linear dilaton gradient be-

comes zero. Explicitly, this is realized by defining the new boosted coordinates x̃0, x̃1 as

follows

x̃0 + x̃1 = γ(x0 + x1), x̃0 − x̃1 = γ−1(x0 − x1), (4.5)

and taking the limit γ → ∞. It is trivial to see gs =const. after this limit is taken.

After this boost, the Liouville potential looks like

SL = µ

∫

dz2 ebγ(X̃0−X̃1). (4.6)

20If we treat the light-cone time t−r as a real time, this background describes a big crunch-like singularity

with yi compactified appropriately, which is almost the same as a half of the spacetime considered in [64].
21Clearly, another series of string theory backgrounds with spacetime boundaries can also be found from

orbifold theories.
22Recently, the null linear dilaton background in the critical type II string is investigated as a model of

cosmological singularity [65].
23We set α′ = 1 in this paper. The OPE is normalized such that Xµ(z)Xν(0) ∼ ηµν log z.
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Since we are taking the limit γ → ∞, the potential (4.6) kills the half of the spacetime.

Thus only the part

x̃1 − x̃0 > 0, (4.7)

survives and the fields can propagate only there. In other words, the closed string tachyon

T condenses completely T → ∞ in x̃1 − x̃0 < 0 and that part of the spacetime disappears

as in figure 5. On the other hand, the tachyon field is vanishing for the opposite region

x̃1 − x̃0 > 0.

Usually the Liouville potential can

Spacetime

Tachyon wall

Time(=x̃
0)

Space(=x̃
1)

Figure 5: A spacetime with a null boundary x̃1 −
x̃0 = 0 induced by a closed string tachyon condensa-

tion. The tachyon condenses completely in the shaded

region and the physical spacetime is given by the op-

posite half region x̃1 − x̃0 > 0.

be interpreted as a tachyon wall. The

wall in our example after the infinite

boost becomes completely rigid in that

the tachyon becomes suddenly infinite

when x̃0 − x̃1 = 0. The wall moves at

the speed of light toward a static ob-

server (see figure 5). We can equally

obtain the opposite background (i.e. de-

fined by x̃0 + x̃1 > 0 instead of (4.7))

by flipping the sign of x0.

This background can be regarded

as a flat space with a null boundary.

This is because the dilaton and metric is

trivial in the region (4.7) as is clear from

the above discussion. This background

will be one of the simplest examples of spacetime boundaries in the critical bosonic string

theory (cf. analogous models [27, 66, 67, 29] in 2D string theory). These arguments can be

easily generalized to the critical type 0 string theory where a similar type of closed string

tachyon field exists.

4.2 Null boundaries in type II string

It is more interesting to ask if a similar null boundary in the flat space is allowed in the

critical type II superstring. In this case we need to take an additional coordinate X2 into

account. In order to obtain the Liouville potential, we compactify X2 such that we can

put the N = 2 Liouville potential (Φ = X1 + iX2)

SL = µ

∫

dz2dθ2e
− Φ

Q + (h.c.), (4.8)

in the null linear dilaton background (4.3). By boosting as before, we again find that

only the half of spacetime (4.7) survives. Since we can choose Q independently, we can

decompactify the circle.24 Therefore we can conclude that we can put a null boundary also

in type II string theory as in figure 5.

24Remember the radius of circle is proportional to Q.
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We can obtain the same result by taking T-dual in the circle direction X2. The

FZZ duality leads to the equivalent background with the following non-trivial metric and

dilaton [68]

ds2 = −(dx0)
2 + (dx1)

2 +
1

Q2
tanh2(Qx1)(dθ)2, gs =

eQx0

cosh(Qx1)
, (4.9)

where θ is compactified such that θ ∼ θ + 2π. Also the value of x1 is restricted as x1 ≥ 0.

Now we perform the previous boost (4.5). When γ is very large, x0 ∼ x1 becomes large

too, and thus we can approximate the string coupling as gs ∼ e−Q(x0+x1) = e−Qγ−1(x̃0+x̃1).

The metric is also approximated by

ds2 ' −(dx̃0)
2 + (dx̃1)

2 +
1

Q2
tanh2

(

Qγ

2
(x̃1 − x̃0)

)

(dθ)2. (4.10)

The restriction x1 ≥ 0 means

x̃1 − x̃0 > 0. (4.11)

Finally we take the limit γ → ∞. Then this spacetime is identified with the flat space

with a rigid wall (or boundary) at x̃1 − x̃0 = 0, as expected. Notice that this argument is

analogous to our previous one (4.1).

After the infinite boost, we recover the flat type II string in the half spacetime (4.11)

and thus all of the 32 supersymmetries are preserved in the bulk points.25 However, the

supersymmetry is completely broken at the rigid wall x̃0 + x̃1 = 0.

4.3 More null boundaries

In the above examples, the metric, dilaton and tachyon are the same as those in the ordinary

flat spacetime except the boundaries. Thus we expect that the equation of motion should

be satisfied even if we put multiple boundaries in the flat spacetime. For example, we can

construct a vacuum restricted to the region

a < x̃1 − x̃0 < b. (4.12)

This represents a spacetime where a finite interval moving at the speed of light as in the

left figure of figure 6.

An explicit construction of this spacetime is to start with the space-like Liouville

term (4.4) as well as the time-like Liouville term

ν

∫

dz2 e−2βX0
, (4.13)

where Q = β − 1/β. After boost we obtain Tclosed ∼ µebγ(x̃0−x̃1) + νeβγ(x̃1−x̃0). Thus if we

assume an appropriate limit of µ/ν we indeed find the restriction (4.12).

A more ambitious example may be the spacetime with two different types of the null

boundaries i.e. x̃+ > 0 and x̃− > 0 at the same time (see the right figure of figure 6).

25Note also that the dilaton is constant after the boost. In the flat background with the null linear

dilaton, only 16 supersymmetries are preserved [65].
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Spacetime

Tachyon wall

Tachyon wall

Tachyon wall

Spacetime

Time

Space

Figure 6: Examples of spacetimes with two null boundaries induced by closed string tachyon

condensation. The two tachyon walls move in the same (or opposite) direction in the left (or right)

spacetime.

Except the point x̃+ = x̃− = 0, the equation of motion is clearly satisfied as in the previous

argument. However, since near the origin the boundaries coincide with each other, there is a

possibility that we have to modify the solution to take stringy backreactions into account.

If we neglect this issue, it is clear that this background describes a universe created at

t = x = 0 and expands at the speed of light. This construction of the spacetime via the

closed string tachyon condensation suggests the recently advertised idea that a spacetime

is an emergent object. We leave further studies of this background for a future problem.

4.4 Effective action argument of null boundaries

It is also useful to see how the spacetime with the null boundary makes sense from the

viewpoint of the effective low energy gravity theory with a closed string tachyon. Remember

the usual caveat that we cannot trust this analysis quantitatively since the tachyon mass

is of order string scale and that, strictly speaking, we have to take higher derivative terms

into account.

We assume the following model as a candidate of an effective action for the 26D bosonic

string

S =
1

2κ2

∫

(dx)26
√
−Ge−2Φ

(

R + 4(∂µΦ)2 − f(T )(∂µT )2 − 2V (T )
)

. (4.14)

If we consider the particular case f(T ) = 1, this is exactly the same as the one [69]

considered by Yang and Zwiebach (see also [70, 71]). We extended this model to allow

any function f(T ) with the requirement f(0) = 1. This is because physically we may be

interested in the possibility f(∞) = 0, which is motivated from the speculation that the

complete tachyon condensation T = ∞ annihilates the spacetime and that there should be

no degree of freedom as in the open string case [72].

The tachyon potential is supposed to satisfy the following properties [69]

V (0) = V ′(0) = 0, (4.15)

and

V (∞) = V ′(∞) = 0. (4.16)
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The first conditions in (4.15) and (4.16) are required in order to satisfy the dilaton equation

of motion. The vacuum T = 0 represents the ordinary (tachyonic) closed string vacuum,

while another one T = ∞ represents the one after the tachyon condensation. The second

conditions in (4.15) and (4.16) assure the absence of tad-pole of the tachyon field T . For

example, the potential V (T ) = T 2e−T [70] proposed by Tseytlin indeed satisfies all of these

conditions. However, it is fair to say that one of the assumptions V (∞) = 0 has not been

completely well-established (some counter evidences have been recently discussed in [73]).

Even if V (∞) = 0 is not correct, we believe that a certain (non-substantial) modification

of our analysis below can be done to show that the null boundary is an allowed solution.

The equation of motions are given by

Rµν + 2∇µ∇νΦ − f(T )∂µT∂νT = 0,

2f(T )∇µ∂µT + f ′(T )(∂µT )2 − 4f(T )∂µΦ∂µT − 2V ′(T ) = 0,

∇2Φ − 2(∂µΦ)2 − V (T ) = 0. (4.17)

Now we would like to confirm that the null boundary background indeed satisfies the

equation of motions (4.17) . Suppose that the metric is flat Gµν = ηµν and the dilaton and

tachyon only depends on the light-cone coordinate x+

Φ = Φ(x+), T = T (x+). (4.18)

Then the first equation in (4.17) leads to

2∂2
+Φ = f(T )(∂+T )2. (4.19)

We can choose the tachyon field of the following form

T = µ eλx+
, (4.20)

which is the same as in the boosted Liouville model (4.6). The second and third equation

in (4.17) are equivalent to

V (T ) = V ′(T ) = 0. (4.21)

Therefore if we take the limit λ → ∞, then the tachyon profile (4.20) satisfies26 (4.21)

because of the properties (4.15) and (4.16).

We would also like to note that we can add the null dilaton Φ(x+)null = Qx+ for any

Q with the equation of motions satisfied. In other word, we can start with the null dilaton

background and cut off the strongly coupled region by putting the null boundary.

It can be easily checked that the above argument is also true for the model obtained

by Tseytlin (setting D = 26) via the sigma-model approach [70]

S =

∫

dxD√
g

(

V (T )e
4Φ

D−2 + α′F (T )(∂µT )2 − α′

2

[

R − 4

D − 2
(∂µΦ)2

])

, (4.22)

where V and F are explicitly given by

V (T ) = −2T 2e−2T , F (T ) = 2(1 − T )e−2T . (4.23)

26In this limit the dilaton becomes trivial Φ(x+) → 0 if we assume the profile f(T ) ∼ e−T .
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Finally we would like to comment on the total energy of the spacetime. As far as we

assume (4.16) as well as (4.15), it is clear that the total energy is divergent as the kinetic

energy is infinite due to the step function-like behavior of the tachyon field T . This is

essentially because we boosted the tachyon wall infinitely and this will not be a serious

problem as far as we start with this background from the beginning. The background

cannot be created dynamically from the ordinary vacuum of flat spacetime. However, if

the assumption V (∞) = 0 in (4.16) is not correct and the tachyon vacuum has a negative

energy, there is a possibility that the total energy is finite and even negative. Naively,

our physical intuition influenced by the present knowledge of the open string tachyon

condensation [72] suggests the second possibility i.e. V (∞) < 0. However, this speculation

may be wrong in the presence of dilaton as discussed in [69] and its final answer will be an

important open problem.

4.5 D-brane analogue

As far as we consider an unstable D-brane (i.e. a D-brane with an open string tachyon)

in type II or other string theories, we can apply the same boost argument in the presence

of the null dilaton and the boundary Liouville term µB

∫

∂Σ dz e−bX1 [74]. Then we can

construct a D-brane with a null boundary in the same way.

5. Conclusions and discussions

More than half of this paper has been devoted to explore evidences for the conjectured

scenario that unstable near horizon geometries of D-branes may decay into stable AdS

bubbles with the same asymptotic geometry via the closed string tachyon condensation.

In particular we examined the novel quantity called the entanglement entropy in both

gravity and Yang-Mills side, which measures the degree of freedom. We show that the

entropy decreases under the tachyon condensations in explicit examples as we expect. A

new example discussed in this paper is the twisted AdS bubble obtained by the double Wick

rotation of the rotating black 3-brane solution. This string theory background includes a

closed string tachyon localized both in the IR region and in the north pole of the S5. This

tachyon is very similar to the one found in the twisted circle (or Melvin background). We

can also say that the tachyon condensation process from the AdS twisted circle to the AdS

twisted bubble is dual to the shift of the Wilson line expectation values from those for the

bulk D3-branes to those for the fractional D3-branes if k + M is even.

It is known that the AdS bubble has a lower energy than the one of the pure AdS5

when we impose the anti-periodic boundary condition for fermions. The Casimir energy of

the free N = 4 super Yang-Mills on S1×R3 with the same boundary condition for fermions

agrees with the energy of AdS bubble in the gravity computation up to the factor of 4
3 . In

the near extremal limit of the twisted AdS bubble example we find that this ratio is given

by 9
8 and thus becomes much more closer to 1.

We obtain a similar behavior also for the entanglement entropy. The free Yang-

Mills/gravity ratio of the entropy becomes 2
3 for the AdS bubble. Remarkably, in the

near extremal limit the ratio becomes precisely 1. All of these results indicate that the
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(twisted) AdS bubble is the true gravity dual geometry corresponding to the Yang-Mills

theory on S1 × R3 with the twisted boundary conditions.

In the final part of this paper we have discussed null spacetime boundaries in string the-

ory. We observe that the tachyon walls or bubbles in a null linear dilaton background lead

to such null boundaries after an infinite boost. They are exactly solvable time-dependent

backgrounds since they are described by the Liouville theory before we take the boost.

Because the metric of this spacetime is strictly flat except the sharp tachyon wall, it is

natural to expect a direct string theoretic description of this spacetime without using the

Liouville theory. In the light-cone gauge it may be described by the restriction τ > 0 of the

world-sheet time τ(= X+). The covariant string description remains as a future problem.
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